A Remark on Simultaneous Approximation

ADAM P. BOSZNAY

Department of Probability Theory, L. Eötvös University, Budapest, Hungary 1088

Communicated by Richard S. Varga

Received January 1, 1977

In this paper we generalize a theorem of [1], and prove a theorem on the continuity of the simultaneous approximation operator. The notation and definitions are adapted from [1, 2].

THEOREM 1. Let $(X, \|\cdot\|)$ be a strictly convex normed linear space, and let M be a reflexive subspace of $(X, \|\cdot\|)$. Then for every nonempty compact (in the norm-topology) set $F \subseteq X$ there exists a unique simultaneous best approximation point in M.

Proof. Let the mapping $\Phi_F: M \to R$ be defined by

$$\Phi_{F}(m) = \sup_{f \in F} \|f - m\|.$$

Since the norm-function is weakly lower semicontinuous, the function Φ_F is weakly lower semicontinuous.

On the other hand,

$$\inf_{m\in M} \Phi_{F}(m) = \varphi_{M}(F) \leqslant \Phi_{F}(0) = \sup_{f\in F} \|f\|,$$

which implies

$$\varphi_M(F) < \Phi_F(m'),$$

if

$$||m'|| > 2 \sup_{f \in F} ||f||.$$

From this.

$$\varphi_{M}(F)=\inf_{m\in A}\Phi_{F}(m),$$

where

$$A = U(0, 2 \sup_{f \in F} ||f||) \cap M.$$

0021-9045/78/0233-0296\$02.00/0

Copyright © 1978 by Academic Press, Inc. All rights of reproduction in any form reserved. By the reflexivity of M, the set A is weakly compact. There exists $m_0 \in A$ such that

$$\varphi_M(F) = \Phi_F(m_0).$$

Now, we prove that Φ_F attains its minimum in M at exactly one point. Assuming the contrary, there is a point $m'_0 \in A$ $(m'_0 \neq m_0)$ such that

$$\Phi_F(m_0) = \Phi_F(m_0').$$

Then

$$\inf_{m \in M}, \Phi_{F}(m) = \Phi_{F}(m_{0}) = \Phi_{F}(m'_{0}),$$

where M' denotes the linear hull of m_0 and m'_0 . From this, using [1, Theorem 1], we have $m_0 = m'_0$.

Let us denote by cpX the metric space of all nonempty compact sets $F \subseteq X$ with the Hausdorff metric

$$d(G_1, G_2) = \max\{\sup_{g_1 \in G_1} \inf_{g_2 \in G_2} \|g_1 - g_2\|, \sup_{g_2 \in G_2} \inf_{g_1 \in G_1} \|g_1 - g_2\|\}.$$

Let $P_M: cpX \to M$ denote the simultaneous best approximation operator, if it exists and is single valued.

THEOREM 2. Let $(X, \|\cdot\|)$ be a reflexive, locally uniformly convex Banach space, and let $M \subseteq X$ be a closed subspace. Then the mapping $P_M : cpX \to M$ is continuous.

Proof. The existence of P_M is obvious by Theorem 1. Assume that F_n , $F \in cpX$, $d(F_n, F) \rightarrow 0$. Then

$$\bigcap_{n=1}^{\infty} \left[M \cap \bigcap_{x \in F} U(x, \varphi_{M}(F) + 2d(F_{n}, F)) \right] = P_{M}(F).$$

The relation

$$P_M(F_n) \in M \cap \bigcap_{x \in F} U(x, \varphi_M(F) + 2d(F_n, F))$$

implies the existence of a subsequence $\{P_M(F_{n_K})\}_{K=1}^{\infty}$ of the sequence $\{P_M(F_n)\}_{n=1}^{\infty}$ for which

$$\exists (w) \lim_{K} P_{M}(F_{n_{K}}) = P_{M}(F). \tag{1}$$

By compactness of F, there exists $x_0 \in F$ such that

$$\varphi_M(F) = ||x_0 - P_M(F)||.$$

It is obvious that for any G_1 , $G_2 \in cpX$,

$$|\varphi_M(G_1) - \varphi_M(G_2)| \leq d(G_1, G_2).$$
 (2)

From $d(F_n,F) \to 0$ it follows that $\exists \{x_{n_{K_\gamma}}\}_{\gamma=1}^\infty$ such that $x_{n_{K_\gamma}} \in F_{n_{K_\gamma}}$, $\exists \lim_{\gamma} x_{n_{K_\gamma}} = x_0$, and $\exists \lim_{\gamma} \|x_{n_{K_\gamma}} - P_M(F_{n_{K_\gamma}})\|$.

Using (2),

$$\lim_{\gamma} \| x_{n_{K_{\gamma}}} - P_{M}(F_{n_{K_{\gamma}}}) \| \leqslant \| x_{0} - P_{M}(F) \|.$$

Moreover, we shall prove

$$\lim_{y} \|x_{n_{K_{y}}} - P_{M}(F_{n_{K_{y}}})\| = \|x_{0} - P_{M}(F)\|.$$
 (3)

For the proof we need relation (4) which follows directly from (1):

(w)
$$\lim_{M} (x_{n_{K_M}} - P_M(F_{n_{K_M}})) = x_0 - P_M(F).$$
 (4)

Were (3) false, there would be an $\epsilon > 0$ and $\gamma_0 \in \mathbb{N}$ such that $\forall \gamma \geqslant \gamma_0$,

$$x_{n_{K_{y}}} - P_{M}(F_{n_{K_{y}}}) \in U(0, ||x_{0} - P_{M}(F)|| - \epsilon).$$

From the convexity and closure of the unit ball, $U(0, ||x_0 - P_M(F)|| - \epsilon)$ is weakly closed. So

(w)
$$\lim_{y} (x_{n_{K_y}} - P_M(F_{n_{K_y}})) \in U(0, ||x_0 - P_M(F)|| - \epsilon),$$

contradicting (4).

The local uniform convexity of the norm implies [2, p. 32, Theorem 4]

$$\lim_{\nu} (x_{n_{K_{\nu}}} - P_{M}(F_{n_{K_{\nu}}})) = x_{0} - P_{M}(F),$$

which implies, in turn,

$$\lim_{\gamma} P_{M}(F_{n_{K_{\gamma}}}) = P_{M}(F).$$

Theorem 2 now follows by standard arguments.

REFERENCES

- 1. A. S. HOLLAND, B. N. SAHNEY, AND J. TZIMBALARIO, On best simultaneous approximation, Letter to the Editor, J. Approximation Theory 17 (1976), 187-188.
- J. Diestel, "Geometry of Banach Spaces—Selected Topics," Lecture Notes in Mathematics, No. 485, Springer-Verlag, Berlin/Heidelberg/New York, 1975.