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In this paper we generalize a theorem of [l], and prove a theorem on the
continuity of the simultaneous approximation operator. The notation and
definitions are adapted from [1, 2].

THEOREM 1. Let (X, II . [I) be a strictly convex normed linear space, and
let M be a reflexive subspace of (X, II . II). Then for every nonempty compact
(in the norm-topology) set Fe X there exists a unique simultaneous best
approximation point in M.

Proof Let the mapping @F : M -+ R be defined by

@F(m) = sup Ilf - mil.
feF

Since the norm-function is weakly lower semicontinuous, the function @F is
weakly lower semicontinuous.

On the other hand,

inf (/)F(m) == C(JM(F) ~ (/)F(O) = sup Ilfll,
meM feF

which implies

if

II m' II > 2 sup Ilfll.
feF

From this,

where

A = U(0,2 sup IIfll) n M.
feF
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By the reflexivity of M, the set A is weakly compact. There exists moE A
such that

Now, we prove that cI>p attains its minimum in M at exactly one point.
Assuming the contrary, there is a point m~ E A (m~ =F mo) such that

Then

where M' denotes the linear hull of mo and m~. From this, using [1,
Theorem 1], we have mo = m~ . I

Let us denote by cpX the metric space of all nonempty compact sets
F C X with the Hausdorff metric

d(G1 , G2) = max{ sup inf II gl - g211, sup inf II gl - g211}·
0lEGl O.EG. O.EG. OleGl

Let PM: cpX -+ M denote the simultaneous best approximation operator,
if it exists and is single valued.

THEOREM 2. Let (X, II •10 be a reflexive, locally uniformly convex Banach
space, and let Me X be a closed subspace. Then the mapping PM: cpX -+ M
is continuous.

Proof The existence of PM is obvious by Theorem 1. Assume that
Fn , FE cpX, d(Fn , F) -+ O. Then

The relation

PM(F.,) E M n n U(x, Cf!M(F) + 2d(Fn , F»
ZEF

implies the existence of a subsequence {PM(FnK)}~~l of the sequence
{PM(Fn)}~_l for which

(I)

By compactness of F, there exists Xo E F such that
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It is obvious that for any G1 , G2 E cpX,

(2)

From d(Fn , F) --+ ° it follows that :J{xnK };'=l such that xnK E FnK '
y y y

:J lim xnK = xo , and :J lim II xnK - PM(FnK )11·
'Y Y 'Y Y Y

Using (2),

Moreover, we shall prove

For the proof we need relation (4) which follows directly from (1):

(w) lim(xnK - PM(FnK )) = Xo - PM(F).
y y y

Were (3) false, there would be an e > °and Yo E N such that Vy ~ Yo ,

(3)

(4)

X nK - PM(FnK ) E U(O, II XO - PM(F)II - e).
y y

From the convexity and closure of the unit ball, U(O, II X o - PM(F)II - e) is
weakly closed. So

(w) lim(xnK - PM(FnK )) E U(O, II XO - PM(F)II - e),
y y y

contradicting (4).

The local uniform convexity of the norm implies [2, p. 32, Theorem 4]

which implies, in turn,

Theorem 2 now follows by standard arguments.
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